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Introduction 
As a NASA center, the  Jet  Propulsion Laboratory (JPL) is committed  to  the 
concept of developing  and  launching  a  continuously  improving  series of 
smaller robotic space exploration missions in shorter  intervals of time (faster, 
better, cheaper). In  order to plan  and  budget these advanced missions,  JPL has 
begun  an  institutional initiative labeled "Develop New Products". (DNP). This 
institutional initiative involves an across the board paradigm shift in the process 
with  which  new projects are  planned,  designed,  and  implemented  in  an 
accelerated implementation cycle. A key factor in the planning of these missions 
is an accurate estimation of their cost so that an adequate, yet efficient, budget 
may be proposed  that will not only be acceptable to NASA but will ensure  a 
realistic implementation of a specific  project within  a  predetermined project 
implementation schedule  and risk envelope. 

The project planning process has also  been  accelerated so that cost estimates may 
be produced  within  a one to two week  cycle.  This permits  a second or third cost 
estimate to be produced  that takes into account technology-cost trades vs. science 
objectives derived from the  advanced  planning  deliberations  in  which  the cost 
estimators play a key  role.  Once converged, this process leads to a  budget estimate 
that  has achieved a certain degree of consensus within the JPL community and  its 
industrial  partners  prior to  entering  the  proposal  stage. Because of this, the 
probability of approval of the proposal is greatly increased. 

The main  instrument for carrying out this  advanced  planning process is a team 
of spacecraft and ground system engineering experts termed "Team X" at JPL. 
The team members are key  technical  staff  selected  by the JPL technical divisions 
as  having the expertise required to design and cost the subsystem to which they 

. have  been assigned. This team conducts  its  deliberations  around  a  distributed 
workstation facility that-interacts  through a  network  in  conjunction  with  a 
central  data base and a  documentarian. This arrangement  perntits  the  study 
leader  and team members to interact in "real time" to  develop 'a preliminary 
design  and cost estimate within  a week. Such a process would 
taken from~Lhree_Bo four months  under the previous  paradigm. 

VJ "l5Zproposals revi ed by  Team X are of the DNP vpe. In order 
to be termed "DIdW, the  proposal must establish that the implementation (from 
concept to launch) can be accomplished within 33 months  and  the  final cost 
estimate must fall into a cost range between $120M and $500M, not including the 
launch vehicle.  Projects falling outside this range are processed using other more 
pertinent models. 
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are examined by the Study Lead and the Team X system engineer and may be 
overridden by them. 

The cost estimation process uses differing approaches to predicting cost based on 
the  portion of the work breakdown  structure (WBS) being estimated. The basic 
methods used for estimating the cost of the distinct portions of the total project 
cost are: 

1. Statistically-based algorithms from the previous Deep  Space  Cost  Model 
that have been adjusted to conform  to the DNP paradigm. This type of 
algorithm c _ *  are termed historically-based algorithms (Hist. Based  Algo.) 

2. A non-statistical algorithm based on a quasi-grass-roots-based estimate and 
expert opinion formulated in consultation with technical specialists in  the 
area of the project component being assessed. The algorithm is based on an 
evaluation of actual data  and  the design of the function being performed 
but which does not have sufficient structure to formulate a model at  this 
time. 

3. Therurrent Instrument Cost Model developed by Keith  Warfield 
4. The current Subsystem  Cost  Model developed by  Leigh  Rosenberg 
5. The actual price of  t"te item being assessed, as in the case  -for launch 

vehicles, where the cost to the government is either predetermined by 
agreement with the vendors  or'is the listed price for the service. 

. .  

The following  lists  the  components of the  advanced project cost estimation 
process and the method used: 

Proiect  Cost Component 
1. Project Management and Administration 
2. Science and Science  Team  Activities 
3. Project and Mission Engineering 
4. Payload (Instruments) 
5. Spacecraft  (System & Subsystem Costs) 

5.1 System  Level  Mgmt & Engrg 
5.2 S/C Subsystem Costs 

6.  Assembly,  Test, and Launch Operations 
7. Mission Operations Development 
8. Launch Vehicle 

Cost  Est. Method 
Hist.-Based  Algo. 
Quasi-GR-Based  Algo. 
Hist.-Based  Algo. 
Instr. Cost  Model 

Hist.-Based  Algo. 
S / S  Cost Model 
Quasi-GR-Based  Algo. 
Quasi-GR-Based  Algo. 
Current Price 

The discussion in this paper concerns itself  solely with the spacecraft subsystem 
costs, item 5.2. Mr.  Rosenberg's paper will discuss the overall process (items 1-8) 
while Mr.  Warfield's paper will deal with the instrument model used in item 4. 

Y 
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This paper describes  the  subsystem  portion of the unmanned mission and 
spacecraft implementation cost model used in this interactive environment  that 
is consistemt with the DNP assumptions. This mission and spacecraft subsystem 
cost model was developed by Mr.  Leigh  Rosenberg of JPL.  An adjunct instrument 
model was developed by  Mr.  Keith  Warfield, also of JPL. Companion papers  are 
being submitted by. Mr.  Rosenberg,  Mr.  Warfield, and other cost team members 
that describe other aspects of the new cost estimation environment including  the 
historical and evolutionary aspects.  The  focus of this  paper will  be on the  design 
and  structure of the subsystem cost model itself. 

2. Model Overview 
Because no  unmanned space missions have yet been fully implemented  using 
the  new spacecraft development lifecycle paradigm shift, the cost model used is 
not based on a historical data base of previously implemented missions. Rather, 
the model is based on a  data base of the prior estimates of proposed missions that 
have  been  developed  using  the Team X process and  that  have been certified as 
viable candidates for future mission proposals. As a result, the model described 
here  acts as a  predictor of Team X results and is currently used to  validate  the 
on-going estimates being developed with respect to  a consistency with  the DNP 
Process, past predictions, and previously proposed design . .~ 

The focus of this paper is on  a subsystem cost m o d e F % s e d  on  data obtained / 

from the Team X process, not on the process or estimates obtained by the team. 
Although  the  model is a  predictor of the  planning team  results,  it  was 
nonetheless designed  as if the parameters  and cost data  were obtained from an 
as-built design. An  effort is under way to validate model estimates obtained using 
the  new  paradigm  as soon as mission implementation costs are available from 
more recent missions that do business under the new paradigm. 

The Cost Model is linked to the Team X system and subsystem workstations so 
that  the technical parameters  required  by  the model are passed  to  the cost 
workstation  which  updates  the estimates of the cost for each subsystem as the - deliberations  are  in  progress. The model cost estimates are  then  used  as a 
comparator to the costs being estimated by the team and  are kept separate from 
the team deliberations so as  not to bias the results. The  Model  cost estimates used 
in this  manner are calculated using algorithms derived from the cost estimation 
relationships-(CERs) derived from the statistical analysis performed - on  the  data 
base of DNP - projects mentioned above. 

Some of the non-technical projectlsystem  infrastructure costs used during the 
Team X sessions are estimated by algorithms  derived from historical costs for 
similar type projects  (scaled to the DNP  project time phase'constraints). Since  they 
are  a function of total system, subsystem, and  instrument costs, the algorithms 
permit  a quick assessment of the infrastructure costs as the subsystem costs are 
being developed. At the end of the deliberations the predicted infrastructure costs ~ 

7 
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3. Cost  Model  Data Base 
The Subsystem Cost  Data  Base  is a collection of all of the system and  subsystem 
technical parameters, subsystem masses, and associated  cost estimates obtained as 
the result of Team X deliberations from  October 1996 through October 1997. Of the 
nineteen  proposed  unmanned  deep  space  projects  whose  estimates  and 
parameters  are  contained  in  the  data base, seventeen  have  been  selected for 
application for the cost model. Other project  cost estimates produced by Team X 
during the  period  the  data base was  constructed  were excluded due  to their 
unique characteristics which did not entirely fit into  the DNP mold. The data 
base  parameters  are  continuously  undergoing  some  fine  tuning  as Team X 
review of the design, results in modification to the parameters. 

Table 1, below, lists  the cost portion of the data base by project. Due to  the 
sensitive nature of the cost data regarding projects, these are only identified by  a 
placeholder identification as P1, P2, etc. 

Table 1. Subsystem Data Base  Cost Summary 

Subsystem  Costs (kr97W) 

Project Other Therm Struct Rop Power Telcom c&DH ADCS TotSM 
core I SMI Core IMeBN 

P1 
17.7  9.1  1.4  13.0  14.6  19.6  9.5  3.4  8.4 96.7 P2 
17.8  12.7  2 .0   15.0  6 .7   15.7  12.3  3 .4   5 .8  91.4 

. 

Std Dev 20.6 
98.2 
33.4 

1.0  10.2  4.6  4.1  8.9  2.8  1.7  9.6 
11 .9   2 .4   0 .8   10 .4  5.5 10.2  8 .3   3 .2   2 .1  
6.1  2.1  0.6 5.0 5 .3   3 .5   7 .4   1 .7   1 .7  
10.2  2.9  0.8  8.1  6.1  9.7  9.4  2.8  1.7 
6 .2   2 .4   0 .7   5 .4   5 .8   3 .5   8 .2   2 .8   1 .7  

12.3  5.9  1.2  10.1  12.5  10.6  9.6  3.1  3.1  11.4 
4.6  2.8  0.4  3.2  9.2  5.6  2.1  0.7  1.8  2.2 

22.3  12.7  2.0  15.0  42.4  20.7  13.5  5.0  8.4  15.0 
6.1  2.1  0.6  5.0  4.6  3.4  4.5  1.7  1.7  9.5 

Table 2, lists the instances of the design parameters, { k }  , which have been selected 
as having a causal relationship to cost  for  all  projects in the data base. 
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Unlta 
Parun-w 

I 1 3 3.4 Gaps - . O m  3000 8199  305 88.9 200 30 1800 380 X HI#! 150  1005 TaM. I 
3500 7 1 1  192  2  1.2  1.44 360 180.0 XIK. 

HI#! - 12  919 

The subsystem  mass  plays  a role as a cost estimation  parameter  in  some 
instances. Table 3. lists the subsystem mass data in the data base. When applicable 
to  a  particular regression fit, the subsystem mass is used as one of the technical 
parameters for the regression fit. 

Table 3. Subsystem Data Bsae Valuer for Mass 

v 
P11 
P12 

P14 
PI3 

P15 
P16 
a 
Std De! 

Avg 

Max 
Min - 

24.6 3.7 15.5 69.8 141.7 112.7 18.5 31 71.1 430.5 0 
8.7 2.8 14.2 13.1 13.4 116.6 4 5  17 69.2 45.2 8.8 
15.9 10.4 13.1 10.4 8 .7  71.6 4.4 180 46.3 4.0 
6.9 1 1  17.1 21.5 69.8 144.7 1 2  221.6 106.3 392.9 

14.6 150 
0 

1.9 1 10.4  15.3  12.2  88.6  7.8  256.6 48.4  35.5 0 
7.1  1.6  22.7  15.3  53.8  125.2  13 275.1 80.6 232.2 0 
5 R  I n  A I n  I R d  1 7 7  CIA 1 7 R  9 s n  5 A  ?n t n 
16.8 7 .3  14.1 45.2 74.2 138.1 21.0 122.9 110.4 415.8 9 .5  66.5 
13.7 5.1 5.9 48.3 60.7 72.4 20.4 109.0 69.7 563.0 16.1 59.2 
48.1 17.5 30.3 195.1 220.1 336.6 79.0 356.4 272.4 2296.4 51.0 150.0 
1.9 1.0 7.2 10.4 7.4 14.1 3.2 4.9 17.0 4.8 0.0  19.2 

4. Model Construction 
In order to predict subsystem costs from the  data  presented  in  the  data base, a 
model  that relates subsystem cost to the parameters, {c}, in table 2 is required. 
The approach taken was to define a regression model function that could be used 
for each of the subsystems to predict cost within the parameter data domain. The 
cost data  and the parameters relevant to each subsystem would form the basis for 
a first order regression fit that would result  in an equation  that  would  then be * 
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used to predict costs for that subsystem within the predictive constraints imposed 
by the fit.  The total subsystem costs would then be obtained by summing all of the 
subsystem cost estimates. 

A  generalized  first order multivariate  linear regression function  [Draper and 
Smith,1966, § 5.11 was used throughout. Although some of the relationships are 
non-linear, they may be transformed to this linear form (ie., they are intrinsically 
linear). It was  determined,  through  analysis  and  experimentation,  that  this 
approach  would provide very  acceptable fits for the data set currently in the  data 
base. d This type of function is traditionally expressed as follows: 

e. qi =.Po + cp.x- 
J lJ 

( j = W  ( 4 4  

where  qi is the  dependent variable, X -  are  the  independent variables, p. are  the 
undetermined coefficients of X.. to be determined  by  means of the  linear 

regression process, and Po is a constant (also to be determined). The  index, i, refers 

to a  particular  instance  where  a  measurement of q i  occurs for the specific 
subsystem for which the linear estimation is being made. 

1J 1 
1J 

Assume that Yi is the measurement of qi  such that, 

where ci is  the  measurement  error and  errors  are  assumed  to be additive  and 
satisfy the Gauss- Markov assumptions [Beck and Arnold,1977, 5 5.1.31. 

. This being the case, we may then express the regression function (4.1) as: 

In  the  particular  application  in  question,  the following interpretation  will  be 
given to the variables and coefficients: 

Yi The  instance, i,  of a cost measurement, Y, for the subsystem under 
assessment. Yi,  is considered an estimate of the regression function, 
qi, of the parameter values (X-). ertaining to the specific instance. 

X.. Instances of the technical parameters selected from the set (c} that 
1 1  

'1 
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have a causal relation to the cost, Y. The  selected parameters are 
ordered from j=1, k, in the equation (4.3). This ordinal specification 
may  be different than that used  in  the  global set of parameters ( k }  
since only the parameters influencing the'  cost are selected. 
The  coefficients of the'linear regression equation for the subsyste 
being assessed that  are to Be estimagd by m e a n d - a n  
process. - 

9 3 

e.  The measurement error, Yi-qi. 1 

This form (4.3), is the regression model to be used in the discussion that follows. 
Other model  approaches  (including  non-linear)  were  examined  but did not 
produce significant  improvements  in  fit for the  particular  set of data  being 
evaluated. 

The linear regression estimation process operates  on two sets of data defined 
from  the  data base.  These are: 1) an nxl matrix of the'cost instances,. Yi, for the 
subsystem being assessed , and 2) a corresponding nx(k+l) matrix of the instances 
of the technical parameters, X.. selected as being causal for this subsystem. 

11 

Y =  ( 4 . 4 )  X =  14.5) 

Using these data  as  input, the linear estimation process solves for estimates of p 
that  minimize ~ i .  These estimated coefficients are  termed, b.. In  general,  the 
results o f  the regression estimation - is  expressed with the predictive equation: 

j 

1 
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where yi is the predicted cost  for the subject subsystem at any instance i , based 
on the estimated parameter coefficients,  b., and the parameters, x.. specified for 
that subsystem at that instance. When using the predictive equation, care must be 
taken  to  ensure  that the parameters selected fall within the domain of the  data 
base parameters. 

1 11 

When the subsystem costs have been individually estimated, the total spacecraft 
system costs may be calculated by summing  the subsystem results.  Additional 
costs for system management, system engineering, spares, integration and test, 
and operations support need to be added to complete the cost estimate for the 
spacecraft. These costs.and the costs associated with  the project infrastructure 
itself will be dealt with in a folow-on paper. 

I( The basic processdm construction of the model were as follows: e? 

Validate the model data base to ensure  that all of the information is 
appropriate  and accurate, 
In consultation with subsystem technologists, establish the initial set of 
parameters, X.., casually related to estimating the cost of each subsystem 
Yi (eg,  mass, power generation, radiation dosage,  etc.). Ensure that these 
are appropriately and accurately represented in the data base. 
Determine the general regression function to be used (as above), 
Conduct an evaluation strategy using the regression strategy selected to 
determine the "best" parameters to leave in the fit. In this case a modified 
backward elimination process was performed to reduce the set of 
parzmeters, X.. to be considered to those resulting in a validated "best  fit" 
and  and whose t statistics indicate validate the hypothesis that E(bj)=O, 
consistent with a maximization of the Coefficient of Multiple 
Determination, (R ). Standard F- and t-  test constraints for  fit and 
coefficient validity were utilized. 
Validate the resulting model against expected behavior within the valid 
range of the parameters. The  model behavior is  checked against 
independent subsystem estimates provided by the expert for that 
subsystem. 
Reconstruct any of the model equations based on any new information 
obtained in the process of validating the model equation in (5). 
The entire set of subsystem costs are then validated against the data base 
itself  to ensure that the difference of the  costs obtained vs. the d_ata. base 
costs  for t a particular'project are Within the expectled variance of the model. 

11 

11 

2 

The current model equations will be updated  as improved interpretation of the 
G .  Madrid -8- March 23,1998 



technical parameters is obtained by working  with  the technical experts in that 
area. The model equations will also be reviewed and validated as soon as actual 
cost data is available for  DNP-Type  projects.  Work  is in progress to collect cost 
and technical data from new projects as they enter the implementation  stage so 
that  the model  may be validated or corrected  with  improved or  actual cost 
information. 

5. Linear Estimation Process and Resulting  Statistics 
The Ordinary Least Squares (OLS) method  was  selected  to  estimate  the 
parameters. OLS is usually recommended when  nothing is known  about  the 
measurement  errors [Beck and Arnold, 1977, § 6.21, since even  with little or  no 
information on the  error  distribution, an  adequate  predictor  may be obtained. 
However,  when information regarding  the  statistics of the  errors is known  or 
assumed,  the process produces an  efficient estimator of the coefficients (p..) This 
section analyzes the statistical results of the use of this  method  and  identifies the 
general form of the predictive equation which is the basis. for the Cost Estimation 
Relationships (CERs) which 81e discussed in the next section. 

1 

In order to be succinct in expressing the logic of the process, we will resort to 
matrix notation in describing the analysis [Beck and Arnold, 1977, § 6.21. The sum 
of squares function used for ordinary least squares  with  the linear model G=XQ is 

where Y and X are defined by (4.4) and (4.5)  respectively and fi is a vector of the 
undetermined coefficients pj, where, j= 0,n. 

Assume  that b is the estimate of B . Then, since Y is the  estimate of q that is 
. sought, 

Y =  X b  ( 5 4  

In order to solve for the estimated coefficients, b, it is necessary to pre-multiply by 

X T  so that 

xTY  =XTX b (5.3) 

Further pre-multiplication by ( X T X  )-I, yields 
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( X T X  )- I T  X Y =  ( X T X  )- 1 T  (X X) b = b (5.4) 

This results in the estimator of the coefficients p 
i’ 

b = ( X T X ) -  I T  X Y (5.5) 

It can readily be demonstrated that 5.5 minimizes the sum of squares, 5.1, and is 
the OLS estimator of the coefficients pj [Johnson and Wichern, 1988, 5 7.31. 

For unique estimation. of all the coefficients, pj, the matrix (X T X) must  be 
non-singular. This means  that  any  one  column  in X cannot be proportional  to 
any  other  column  or  any linear  combination of columns  because if such a 

proportionality exists the determinant of (X T X) must equal zero. 

As we have mentioned before, if the errors  are additive, of zero mean in Y and X, 
and the fi are nonstochastic, then E( b) is an unbiased estimator of B such that, 

E(b)=  ( X T X ) -  1 T  X X Q =  B (5.6) 

The covariance matrix for the coefficients is expressed as: 

cov(b) = (XTX )- 1 T  X y~ X ( X T X  )-I (5.7) 

where, y~ = (E E ) = 0 1. T 2 

If it is further assumed that  the  errors  are uncorrelated and of constant variance. 
. Then the covariance matrix for the coefficients may be reduced to the expression , 

cov(b) = (XTX )-I c? (5.8) 

which is the  minimum covariance matrix of  b. The variances of the bj (or the 
SE 2 , depending on  the  assumptions being used) may be  obtained  from  the 
diagonal elements of this matrix [Draper and Smith, 1966, Q 4.21. 

Similarly, from the  relationships, 5.5, 5.6, and 5.7, all of the necessary items 
required to  evaluate the fit are obtained. The  following table lists the basic data 
items needed for the analysis: . - 
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Table 4. Results of Linear  Estimation Process Required for Assessment 

I Estimated  Coefficients  (bl)  and  related  statistics I . . .  
bk I b k - l  I I *   I *  

Est.  Value  (b,) ... ... ... ... ...  ...  ... ... 
Std. Error (SE) .;.  ... ...  ... ... ... ... ... 
t Statistic ... ...  ...  ...  ...  ... ... ... 

...  ... ... ... ... ... 

The predicted b. values and  the  standard errors for the coefficients are, of course, 
produced  as a direct  result of the  least  squares  minimization. For the 
assumptions on the error being used, the following statements hold, 

I 

V(b.) = c.- (T 1 I1 
where  the cj j  are the diagonal elements of ( X T  X )-I. 
If (T is not known or normality is suspect then 

2 (5.11) 

est. var (b.) = c- s 2 
I 11 (5.12) 

and, SE(bj) = ( c*- s ) 2 1/2 
IJ (5.13) 

where s2 is the sample variance for  each bj and SE(b.) is the standard  error of 
estimate. 

1 

In a similar manner the variance of  Y, V(Y), or the standard error of Y, SE(Y), can 
be determined from the diagonal elements of, 

cov(Y’) = x (XTX ) x 0 
-1 T 2 (5.14) 

Under  the assumptions being invoked, the t statistic for  each bj may be computed 
as, 
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The  Coefficient of Multiple Determination, R2, is  defined  as, 

(5.15) 

(5.16) 

where, SS is the regression sum of squares  (the  deviation  between  the 
regression line (Y’i) and the mean ( 1) and SStot is the total sum of squares  (the 
total deviation between the data (Yi) and the mean ( x). However, since SStot is 

the sum of SS and SSresid, the R statistic may be  calculated  as, 

reg 

2 
reg 

R2 = SSreg + ( SSreg + SSresid) (5.17) 

where, %,,,id is  defined as c( Y’i- Yi )2 

The F statistic, used in the test  for  lack of fit is computed as, 

The F statistic for the fit  is dependent  on  the  degrees of freedom, df, which is 
defined for the table above,  as: the number of data points, n,  less the  number of 
variables being determined in the regression analysis, k (including  the constant, 

The  F-test criteria for goodness of fit  used  is that, 
bo). 

(5.19) 

where Fcrit is the F(k, df, a)  critical value from the F-tables.  The greater F is than 
the Fcrit value, the better the confidence that the “best” fit has been achieved. 

6. Cost  Estimation  Relationships and Constraints 
The cost estimation relationships, which are the direct expression of the 

model,  are  built  utilizing  the  predictive equ_ation (4.6), Jhe  coefficients 
determined in the linear estimation process, and the corresponding  statistics 
desciibed  in section 5. This section summari.zes the CER’s developed for the 
Spacecraft Subsystem Model  by subsystem, including the constraints imposed by 
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the data  sets used in the linear estimation process. 

6.1. Attitude Determination and Control  (ADCS) 
The following CER for the estimated subsystem cost (Y) in millions of dollars 
(FY97) was  determined for ADCS subsystems  within  the  range of the  data 
domain: 

Y = bo + bl*X1+  b2* X2 + b3*X3 

Coefficients & Constraints for ADCS 
1 

X Parameters 
nla Constant =1 X 0  
u n i t s  

arcsecs Pointing Knowledge X 3 
kbps DIL Data  Rate X 2 
kg Subsystem  Mass X 1 

Avg 
nla 
16.06 
60.63 

327  

Constraints 

S.Dev 
nla nla 

Min Max 
nla 

13.6 
149  

1.9  48.1 

5 900   302  
0 600  

I I 1 

Symbol  Value 
9.674 

0.2428 
0.0064 

b3 - 0 . 0 0 4  

6.2. Command and Data Handling (CbDH) 
The following CER for the estimated subsystem cost (Y) in millions of dollars 
(FY97) was  determined for C&DH subsystems  within  the  range of the  data 
domain: 

Coefficients & Constraints for C&DH 

X Parameters u n i t s  

0 600  1 .55  71.8 kbps D L  Data  Rate x 1  
nla nla nla nla nla Constant =1 X 0 
Min Max S.Dev Awg 

Constraints 

X 2 1 3 0 .7  2 .6  ordinal Redundancy 

0.3078 
0.01  63 
2.4886 

This CER covers  the sum of both  hardware and  software for the C&DH 
subsystem. 

6.3. Telecommunications  (Telecom) 
The following CER for the estimated subsystem cost (Y) in millions of dollars 
(FY97) was determined for Telecommunications subsystems within the range 
of the data domain: 

Y = bo + bl*X1+ b2* X2 + b3*  X3+  b4+ X4 (6.3) 
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Coefficients & Constraints for Teie 
I 

com 
Constraints 

I X  Parameters lunl ts  lAva IS.Dev lMax lMln I 
X 0  Constant =1 n / a   n / a   n / a   n / a  
X 1 Subsystem ,Mass kg 1 4  6 30   0 .16946 
X 2 Redundancy ordinal 2 . 3   0 . 8  3 1 0.9755 
X 3  WKa Band ordinal 0 . 5  0 . 5  1 0 - 3 . 5 4  
X 4 S/UHF Band ordinal 0 .4  0 . 5  1 - 6 . 7 6 2 3  

6.4. Power  Generation  (Power) 
The following CER-for the estimated subsystem cost (Y) in millions of dollars 
(FY97) was  determined for Power subsystems  within  the  range of the  data 
domain: 

Coefficients & Constraints for Power 
I Constraints IX Parameters  lunits  (Avg  IS.Dev IMax IMin 

I X  o Iconstant =I In/a   In/a   In/a   In/a   In/a  I 

x2 
0 10500 31 98 2038 watts Adv Si X 3  
0 2 0 0  58.5  21.9 watts AMTH= 

4 ~GSASMT watts  304  11101  46001 0 
~~~ 

Coeff. 
Value Symbol  
Coeff 

*b 0 5.08 

bl  
0.1579 b2 

0.002 

lb3 
0.002 

p 4  

0.001 

'b5 0 .0022 

6.5. Propulsion 
The following CER for the estimated subsystem cost (Y) in millions of dollars - (FY97) was determined for Propulsion subsystems within the range of the  data 
domain: 

Y = bo + bl*X1+  b2* X2 (6.5) 
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Coefficients & Constralnts for 

- 1  9 . 7  
3.01 8 

3.09 

6.6. Structures 
The following CER for the estimated subsystem cost (Y) in millions of dollars 
(FY97) was determined for Structures subsystems within the range of the  data 
domain: 

Y = bo + bl*X1+  b2* X2 
where Y = Ln (cost). 

Coefficients & Constraints for Structures 

S.Dev rl Min  Max 
Constraints 

X Parameters  units Avg 
0.65276 nla  nla  nla  nla nla Constant =1 X 0 

S mbol Value 

x1 Ln SS Mass nla 5 1 6 

Cost is obtained from this CER by computing e'. 

0.00464 - 4  6 3 1 nla Ln D L  Data  Rate X 2  
0.33002 3 

A supplementary  estimate of the  mechanical build-up  that  is  usually 
associated with structures. This CER is, 

Coefficients & Constraints for Mechanical  Build Up 
I Constraints I X  Parameters  lunits [Avg 1S.Dev lMax IMin 

X 0 
1 4  337  71 136 kg Subsvstem  Mass x 1  

nla  nla nla  nla  nla Constant =1 

X 2 5 9 0 0 302.5 3 2 6 arcsec Pointing Knowledge 

(6.6a) 

1.833 

- 0 . 0 0 0 4  

6.7. Thermal Protection 
The following CER for the estimated subsystem cost (Y) in millions of dollars 
(FY97) was determined for Power subsystems  within the range of the  data 
domain: 
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Coefficients 81 Constraints for Thermal 

S.Dev / : i I  Min  Max 
Constraints  Coeff. Coeff 

X Parameters u n i t s  

1.068 0 1 0 .4  0 . 8  ordinal Redundancy X 1 
1 .817 nla nla nla nla nla Constant =1 X 0 

S mbol  Value Avg 

I I 

X 2  1 0 . 3  0.1 ordinal  ActiveIPassive 

6.8. Statistical Summa y 
In evaluating each CER the statistics on the b. coefficients and the estimated 
response variable, Y were analyzed. The  t, statistics were tested to determine if 
the  resulting estimates for the coefficients were significant contributors.  "tis 
information  was  used  in  determining  which coefficients to leave in  the 
regression  estimate and which to drop  out. In general, the  final  t  statistics 
satisfied the t-test criteria for  significance.  The R and  the  F statistic were used 
to  determine  the  goodness of fit of the  resulting  predictive  equation for Y. 
The following table  summarizes  the  estimate  statistics associated with  the 
CER's listed above. 

I 

2 

Table 5. Summary Estimate  Statistics 

Average  . 8 5  2 9 . 9  2 . 4  1 2 . 4  6 . 5  4 . 6  
Min  . 7 4  1 7 . 2  2 . 0  1 1  . o  5 . 7  2 . 5  
Max . 9  9 0 . 3  4 . 0  1 3 . 0  6 . 9  1 3 . 5  

From  the  summary  we  see  that  all of the coefficients of multiple 
determination (R2) are very high (.74 or above). The F statistics are similarly 
high  and  compare well with  the Fcrit values for each of the  regression 
estimates. For this reason, we believe that  the  estimates  produced by the 
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model  are accurate predictor's of the Team X estimates for missions that  fall 
within the range of the data base parameters. In order  to visually demonstrate 
how  the model is validated against the source data itself, we show (in figure 2) 
a comparison of actual psopulsion subsystem costs (in  the  data base) with the 
model predicted costs.  Tlycost estimate model for this subsystem demonstrates 
an extremely  good  fit to the data (R2 = .95). 

n 
This does  not mean that all work on the model is complete. Other subsystem 
models need further refining. A great deal of fine tuning is being conducted 
as  our continuing sessions with the cognizant engineers bring out other causal 
relations and parameters that need to be validated and tested. It is the goal of 
the cost team to achieve results  such  that all of the  predictive  equations 

parameters. 
achieve  the  optimum  ability  predict  casts  within  the  range of the 

Fig. 2. Propulsion:  Actual vs. Predicted 

kbq 
I \  I u - 4- - Pred 

0 5 10 15  20 

Project 

7. Cost  Model  Utilization in an Interactive Environment 
The cost model CER's are  currently being utilized by  Team X in  an interactive 
environment  that  permits spacecraft designers  to  see  the cost impact of their 
design decisions as they progress. This permits them to make the necessary trades 
between, science, technology, and engineering practice to achieve a-design  that 
falls- within  a specific  cost cap. Leigh  Rosenberg  will provide more details of this 
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process in his paper. 

8. Concluding  Remarks 
The Unmanned Spacecraft Subsystem Cost Estimation Model, has evolved into 
one of the key  tools being used to plan and cost advanced missions.  The ability to 
predict what the Team X group of experts would estimate as the cost of a proposed 
mission is of great value in performing cost trades  and off-line studies before 
calling a Team X session. Besides avoiding  unnecessary planning costs, the 
model  permits the cost analyst  supporting  the Team X sessions to  evaluate  the 
costs that  are currently being estimated against the model. He may then  bring  any 
inconsistencies to  the  attention of the Team lead and  have  the  issue resolved 
during  the session. In every respect, the model will enhance the efficiency of the 
planning process and improve the quality of cost estimates for advance projects 
under  study by  Team X. . 

In  the  future,  the  model  will  also be validated  against  actual  project 
implementation costs as  these occur. Once a sufficient number of these  new 
projects have been implemented and  the model is modified to reflect these  data, 
the  model will  become the de facto tool  for predicting future project costs which 
are compliant to the DNP approach. 

Current work on  the  model  includes  adapting  the  model  to  handle  non-DNP 
projects and the addition of a monte carlo simulation feature. 
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